Porous alumina from protein foaming-consolidation method containing hydrothermal derived hydroxyapatite powder

Document Type

Article

Publication Date

1-1-2012

Abstract

Porous alumina containing hydrothermal derived hydroxyapatite (HA) composite were successfully fabricated via protein foaming-consolidation method. Alumina and HA powders were mixed with yolk, starch and darvan 821 A at an adjusted mass ratio to make slurry. The slurries were cast into cylindrical shaped molds and then dried for foaming and consolidation process. Subsequently, the dried bodies were burned at 600 degrees C for 1 h, followed by sintering at temperatures of 1300 - 1400 degrees C for 2 h. The porous alumina-HA composites with pore size in the range of 95-300 im and density of 2.7 - 2.9 g cm(-3) were obtained. Porosity of bodies decreased from 31.7 to 27.6 when sintering temperatures increased from 1300 to 1400 degrees C. The increasing HA-to-alumina mass ratio from 0.2 to 0.8 w/w increased compressive strength of sintered bodies from 2.3 to 10.0 MPa. XRD pattern results show intensity of tricalcium phosphate (TCP) phase increased with sintering temperatures and also found that the sintering process did not alter phases in the porous bodies.

Keywords

Alumina hydroxyapatite hydrothermal protein foaming-consolidation method

Divisions

fac_eng

Publication Title

Applied Mechanics and Materials

Volume

117-11

Additional Information

you can e-mail to me for the full text of my jurnal at ramesh79@um.edu.my

This document is currently not available here.

Share

COinS