Parallel Implementation of 2-D Telegraphic Equation on MPI/PVM Cluster
Document Type
Article
Publication Date
4-1-2011
Abstract
In this paper, a parallel implementation of the Iterative Alternating Direction Explicit method by D'Yakonov (IADE-DY) to solve 2-D telegraphic problem on a distributed system using Message Passing Interface (MPI) and Parallel Virtue Machine (PVM) are presented. The parallelization of the program is implemented by a domain decomposition strategy. A Single Program Multiple Data (SPMD) model is employed for the implementation. The implementation is discussed in relation to means of the parallel performance strategies and analysis. The model enhances overlap communication and computation to avoid unnecessary synchronization, hence, the method yields significant speedup. The level of speedup observed from tables as the mesh increases are in the range of 5-10%. Improvement has been achieved by numbers of tables and figures in our experiment. We present some analyses that are helpful for speedup and efficiency. It is concluded that the efficiency is strongly dependent on the grid size, block numbers and the number of processors for both MPI and PVM. Different strategies to improve the computational efficiency are proposed.
Keywords
Computer Science, Theory & Methods
Divisions
MathematicalSciences
Publication Title
International Journal of Parallel Programming
Volume
39
Issue
2
Publisher
Kluwer (now part of Springer)