Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell
Document Type
Article
Publication Date
1-1-2008
Abstract
Carbon molecular sieves (CMS) have been prepared from locally available palm shell of Tenera type by a thermal treatment technique involving carbonization followed by steam activation and benzene deposition technique. Carbonization of the dried palm shells was done at 900 °C for duration of 1 h followed by steam activation at 830 °C for 30-420 min to achieve activated carbons with different degree of burn-offs. The highest micropore volume of activated carbon obtained at 53.2 burn-off was found suitable to be used as a precursor for CMS production. Subsequent benzene deposition onto activated samples at temperature range from 600 to 900 °C for various benzene concentrations have resulted in a series of CMS with different kinetic selectivities. The molecular sieving behaviour of the CMS products was assessed by kinetic adsorption isotherms of O2, N2, CO2 and CH4 at room temperature.
Keywords
Activation, Benzene deposition, Carbon molecular sieves, Palm shell, Carbon molecular sieves (CMS), Palm shells, Activation analysis, Adsorption, Benzene, Carbonization, Chemical vapor deposition, Surface chemistry, Molecular structure, activated carbon, carbon dioxide, carbon molecular sieve, methane, nitrogen, oxygen, unclassified drug, adsorption kinetics, article, chemical reaction, gas, isotherm, molecule, precipitation, priority journal, room temperature, temperature, water vapor.
Divisions
fac_eng
Publication Title
Colloids and Surfaces A: Physicochemical and Engineering Aspects
Volume
312
Issue
2-3
Publisher
Elsevier
Additional Information
Cited By (since 1996):13 Export Date: 21 April 2013 Source: Scopus CODEN: CPEAE :doi 10.1016/j.colsurfa.2007.06.040 Language of Original Document: English Correspondence Address: Ahmad, M.A.; School of Chemical Engineering, University Science of Malaysia, Seri Ampangan, Nibong Tebal, 14300 Penang, Malaysia; email: chazmier@eng.usm.my : Chemicals/CASactivated carbon, 64365-11-3, 82228-96-4; benzene, 71-43-2; carbon dioxide, 124-38-9, 58561-67-4; methane, 74-82-8; nitrogen, 7727-37-9; oxygen, 7782-44-7 References: Ngan, M.A., (2002) Palm Oil Eng. Bull., 65, p. 24; Wan Daud, W.M.A., Wan Ali, W.S., (2004) Biores. Technol., 93, p. 63; Casa-Lillo, M.A., Alcañiz-Monge, J., Raymundo-Piñero, E., Cazorla-Amorós, D., Linares-Solano, A., (1998) Carbon, 36, p. 1353; Vyas, S.N., Patwardhan, S.R., Vijayalakshmi, S., Ganesh, K.S., (1994) J. Colloid Interface Sci., 168, p. 275; Kim, T.H., Vijayalakshmi, S., Son, S.J., Kim, J.D., (2002) J. Porous Mater., 9, p. 279; Zhonghua, H., Vansant, E.F., (1995) Carbon, 33, p. 561; David, E., Talaie, A., Stanciu, V., Nicolae, A.C., (2004) J. Mater. Process. Technol., 157, p. 290; Nguyen, C., Do, D.D., (1717) Carbon, 33 (1995); Samaras, P., Dabou, X., Sakellaropoulos, G.P., (1998) J. Therm. Anal. Calorim., 52, p. 717; Lozano-Castello, D., Alcaniz-Monge, J., Cazorla-Amorós, D., Linares-Solano, A., Zhu, W., Kapteijn, F., Moulijn, J.A., (2005) Carbon, 43, p. 1643; Miura, K., (1999) Catal. Soc. Jpn., 41, p. 25; Tan, J.S., Ani, F.N., (2004) Sep. Purif. Technol., 35, p. 47; Villar-Rodil, S., Navarrete, R., Denoyel, R., Albiniak, A., Parades, J.I., Martinez-Alonso, A., Tascon, J.M.D., (2005) Micropor. Mesopor. Mater., 77, p. 109; Cabrera, A.L., Zehner, J.E., Coe, C.G., Gaffney, T.R., Farris, T.S., Armor, J.N., (1993) Carbon, 31, p. 969; Vyas, S.N., Patwardhan, S.R., Gangadhar, B., (1992) Carbon, 30, p. 605; Freitas, M.M.A., Figueiredo, J.L., (2001) Fuel, 80, p. 1; Kawabuchi, Y., Masahiro, K., Shizuo, K., Whitehurst, D.D., Mochida, I., (1996) Langmuir, 12, p. 4281; Zhang, T., Walawender, W.P., Fan, L.T., (2005) Biores. Technol., 96, p. 1929; JasieÅ�ko-HaÅ�at, M., Kedzior, K., (2005) Carbon, 43, p. 944; Horvath, G., Kawazoe, K., (1983) J. Chem. Eng. Jpn., 16, p. 470; Daguerre, E., Guillot, A., Py, X., (2000) Carbon, 38, p. 59; De Salazar, C.G., Sepúlveda-Escribano, A., RodrÃguez-Reinoso, F., (2005) Adsorption, 11, p. 663