On classical adjoint-commuting mappings between matrix algebras

Document Type

Article

Publication Date

1-1-2010

Abstract

Let F be a field and let m and n be integers with m, n >= 3. Let M(n) denote the algebra of n x n matrices over F. In this note, we characterize mappings psi : M(n) -> M(m) that satisfy one of the following conditions: 1. vertical bar F vertical bar = 2 or vertical bar F vertical bar > n + 1, and psi (adj (A + alpha B)) = adj (psi (A) + alpha psi (B)) for all A, B is an element of M(n) and alpha is an element of F with psi (I(n)) not equal 0. 2. psi is surjective and psi (adj (A - B)) = adj (psi (A) - psi (B)) for every A, B is an element of M(n). Here, adj A denotes the classical adjoint of the matrix A, and I(n) is the identity matrix of order n. We give examples showing the indispensability of the assumption psi (I(n)) not equal 0 in our results. (C) 2009 Elsevier Inc. All rights reserved.

Publication Title

Linear Algebra and its Applications

Volume

432

Issue

10

Publisher

Elsevier

This document is currently not available here.

Share

COinS