Enhanced adsorption of metal ions onto polyethyleneimine-impregnated palm shell activated carbon: Equilibrium studies

Document Type

Article

Publication Date

1-1-2008

Abstract

In this study, palm shell activated carbon was impregnated with polyethyleneimine (PEI) and the effect of impregnation on batch adsorption of Ni2+, Cd2+or Pb2+ as well as the equilibrium behavior of adsorption of metal ions on PEI-impregnated AC were investigated. PEI impregnation evidently increased the single metal adsorption capacities of Ni2+ or Cd2+except for Pb2+, where its adsorption capacities were reduced by 16.67 and 19.55 for initial solution pH of 3 and 5 respectively. This suggested that PEI-impregnated AC could be used for selective separation of Pb2+ ions from other metal ions. The adsorption data of all the metal ions on both virgin and PEI-impregnated AC for both initial solution pH of 3 and 5 generally fitted the Langmuir and Redlich-Peterson isotherms considerably better than the Freundlich isotherm.

Keywords

Adsorption, Isotherms, Metal ions, Palm shell activated carbon, Polyethyleneimine, Carbon Charcoal, Nickel, Shells (structures), Batch adsorption, Equilibrium studies, Palm shell, Polyethylene imine (PEI), Activated carbon, cadmium, lead, metal ion, cation, equilibrium, isotherm, nut, pH, polymer, shell, article, Langmuir Blodgett film.

Divisions

fac_eng

Publication Title

Water Air and Soil Pollution

Volume

192

Issue

1-4

Publisher

Water Air and Soil Pollution

Additional Information

Cited By (since 1996):6 Export Date: 21 April 2013 Source: Scopus CODEN: WAPLA :doi 10.1007/s11270-008-9660-9 Language of Original Document: English Correspondence Address: Yin, C. Y.; Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; email: yinyang@salam.uitm.edu.my : Chemicals/CASactivated carbon, 64365-11-3, 82228-96-4; cadmium, 22537-48-0, 7440-43-9; lead, 7439-92-1; nickel, 7440-02-0; polyethyleneimine, 74913-72-7 References: Ali, U.F.M., Aroua, M.K., Daud, W.M.A.W., Modification of a granular palm shell based activated carbon by acid pre-treatment for enhancement of copper adsorption (2004) Third Technical Postgraduate Symposium, , Paper presented at the, Kuala Lumpur, Malaysia, December; Brown, P., Jefcoat, I.A., Parrish, D., Gill, S., Graham, E., Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution (2000) Advances in Environmental Science, 4, pp. 19-29; Chingombe, P., Saha, B., Wakeman, R.J., Effect of surface modification of an engineered activated carbon on the sorption of 2,4-dichlorophenoxy acetic acid and benazolin from water (2006) Journal of Colloid and Interface Science, 297, pp. 434-442; Dastgheib, S.A., Rockstraw, D.A., A model for the adsorption of single metal ion solutes in aqueous solution onto activated carbon produced from pecan shells (2002) Carbon, 40, pp. 1843-1851; Daud, W.M.A.W., Ali, W.S.W., Sulaiman, M.Z., Effect of activation temperature on pore development in activated carbon produced from palm shell (2002) Journal of Chemical Technology and Biotechnology, 78, pp. 1-5; Demirbas, E., Kobya, M., �ncel, S., Sencan, S., Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: Equilibrium studies (2002) Bioresource Technology, 84, pp. 291-293; (2002) Malaysian Environmental Quality Report, , Department of Environment (DOE) ISSN 0127-6433; Freundlich, H., Adsorption in solution (1906) Physical Chemistry Society, 40, pp. 1361-1368; Gustafsson, J.P., (2006) VMINTEQ 2.50 Software Manual, , http://www.lwr.kth.se/English/OurSoftware/vminteq, Retrieved January 2006 from; Hawari, A.H., Mulligan, C.N., Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass (2006) Bioresource Technology, 97, pp. 692-700; Hussein, M.Z., Tarmizi, R.S.H., Zainal, Z., Ibrahim, R., Badri, M., Preparation and characterization of active carbons from oil palm shells (1996) Carbon, 34, pp. 1447-1454; Issabayeva, G., (2005) Adsorption and Electroreduction of Copper and Lead Ions on Palm Shell Activated Carbon, , Dissertation, University of Malaya; Issabayeva, G., Aroua, M.K., Sulaiman, N.M.N., Removal of lead from aqueous solutions on palm shell activated carbon (2006) Bioresource Technology, 97, pp. 2350-2355; Jia, Y.F., Thomas, K.M., Adsorption of cadmium ions on oxygen surface sites in activated carbon (2000) Langmuir, 16, pp. 1114-1122; Kislenko, V.N., Oliynyk, L.P., Complex formation of polyethyleneimine with copper(II), nickel(II), and cobalt(II) ions (2002) Journal of Polymer Science a, 40, pp. 914-922; Kobya, M., Demirbas, E., Senturk, E., Ince, M., Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone (2005) Bioresource Technology, 96, pp. 1518-1521; Kokorin, A.I., Lymar, S.V., Parmon, V.N., Structure of the polymer coil of branched polyethyleneimine in solution in the presence of copper ions (1981) Polymer Science USSR, 23, pp. 2209-2214; Kumar, K.V., Sivanesan, S., Sorption isotherm for safranin onto rice husk (2007) Dyes and Pigments, 72, pp. 130-133; Langmuir, I., The adsorption of gases on plane surfaces of glass, mica, and platinum (1918) Journal of the American Chemical Society, 40, pp. 1361-1368; Lopez-Ramon, M.V., Stoeckli, F., Moreno-Castilla, C., Carasco-Martin, F., On the characterisation of acidic and basic surface sites on carbons by various techniques (1999) Carbon, 37, pp. 1215-1221; Lua, A.C., Guo, J., Preparation and characterization of chars from oil palm waste (1998) Carbon, 36, pp. 1663-1670; Maroto-Valer, M.M., Tang, Z., Zhang, Y., CO2 capture by activated and impregnated anthracites (2005) Fuel Processing Technology, 86, pp. 1487-1502; Monser, L., Adhoum, N., Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater (2002) Separation and Purification Technology, 26, pp. 137-146; Mullet, M., Fievet, P., Szymczyk, A., Foissy, A., Reggiani, J.C., Pagetti, J., A simple and accurate determination of the point of zero charge of ceramic membranes (1999) Desalination, 121, pp. 41-48; Ozkaya, B., Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models (2006) Journal of Hazardous Materials, 129, pp. 158-163; Park, S.J., Jang, Y.S., Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(IV) (2002) Journal of Colloid and Interface Science, 249, pp. 458-463; Redlich, O., Peterson, D.L., A useful adsorption isotherm (1959) Journal of Physical Chemistry, 63, p. 1024; Saygideger, S., Gulnaz, O., Istifli, E.S., Yucel, N., Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: Effect of physicochemical environment (2005) Journal of Hazardous Materials, 126, pp. 96-104; Suen, S.Y., A comparison of isotherm and kinetic models for binary solute adsorption to affinity membranes (1996) Journal of Chemical Technology and Biotechnology, 65, pp. 249-257; Ucer, A., Uyanik, A., Aygun, S.F., Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon (2006) Separation and Purification Technology, 47, pp. 113-118; Vladimir, S.J., Malik, D., Characterization and metal sorptive properties of oxidized active carbon (2002) Journal of Colloid and Interface Science, 250, pp. 213-220; Wu, S.N., Chen, P.J., Modification of a commercial activated carbon for metal adsorption by several approaches (2001) International Containment & Remediation Technology Conference and Exhibition, , Paper presented at, Orlando, Florida, June; Xu, X., Song, C., Andresen, J.M., Miller, B.G., Scaroni, A.W., Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture (2002) Energy and Fuels, 16, pp. 1463-1469; Yin, C.Y., Aroua, M.K., Daud, W.M.A.W., Modification of granular activated carbon using low molecular weight polymer for enhanced removal of Cu 2+ from aqueous solution (2007) International Conference on Water Management and Technology Applications in Developing Countries, , Paper presented at, Kuala Lumpur, Malaysia, May; Yin, C.Y., Aroua, M.K., Daud, W.M.A.A., Impregnation of palm shell activated carbon with polyethyleneimine and its effect on Cd2+ adsorption (2007) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 307, pp. 128-136

This document is currently not available here.

Share

COinS